On the Integral Systems Related to Hardy-littlewood-sobolev Inequality

نویسنده

  • FENGBO HANG
چکیده

We prove all the maximizers of the sharp Hardy-Littlewood-Sobolev inequality are smooth. More generally, we show all the nonnegative critical functions are smooth, radial with respect to some points and strictly decreasing in the radial direction. In particular, we resolve all the cases left open by previous works of Chen, Li and Ou on the corresponding integral systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry of Solutions to Some Systems of Integral Equations

In this paper, we study some systems of integral equations, including those related to Hardy-Littlewood-Sobolev (HLS) inequalities. We prove that, under some integrability conditions, the positive regular solutions to the systems are radially symmetric and monotone about some point. In particular, we established the radial symmetry of the solutions to the Euler-Lagrange equations associated wit...

متن کامل

Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion

In the euclidean space, Sobolev and Hardy-Littlewood-Sobolev inequalities can be related by duality. In this paper, we investigate how to relate these inequalities using the flow of a fast diffusion equation in dimension d ≥ 3. The main consequence is an improvement of Sobolev’s inequality when d ≥ 5, which involves the various terms of the dual Hardy-Littlewood-Sobolev inequality. In dimension...

متن کامل

Hardy–Littlewood–Sobolev and Stein–Weiss inequalities and integral systems on the Heisenberg group

In this paper, we study two types of weighted Hardy–Littlewood–Sobolev (HLS) inequalities, also known as Stein–Weiss inequalities, on the Heisenberg group. More precisely, we prove the |u| weighted HLS inequality in Theorem 1.1 and the |z| weighted HLS inequality in Theorem 1.5 (where we have denoted u = (z, t) as points on the Heisenberg group). Then we provide regularity estimates of positive...

متن کامل

Probabilistic Approach to Fractional Integrals and the Hardy-littlewood-sobolev Inequality

We give a short summary of Varopoulos’ generalised Hardy-LittlewoodSobolev inequality for self-adjoint C0 semigroups and give a new probabilistic representation of the classical fractional integral operators on Rn as projections of martingale transforms. Using this formula we derive a new proof of the classical Hardy-LittlewoodSobolev inequality based on Burkholder-Gundy and Doob’s inequalities...

متن کامل

Sharp Hardy-littlewood-sobolev Inequality on the Upper Half Space

There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent λ = n−α (that is for the case of α > n). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005